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Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. Thirty nine non-zero numbers are written in a row. The sum of any two neighbouring
numbers is positive, while the sum of all the numbers is negative. Is the product of all
these numbers negative or positive? (4 points)

2. Aladdin has several gold coins and from time to time he asks the Genie to give him more.
On each such occasion the Genie first responds by adding a thousand gold coins and then
he takes back a half of the total weight of all Aladdin’s gold coins. If after asking the
Genie for more gold ten times, is it possible for Aladdin that the number of his gold coins
has increased taking into account that each time the Genie takes a half of all Aladdin’s
gold back and no coin is broken into smaller pieces? (5 points)

3. Do there exist 2018 positive reduced fractions, each with a different denominator, such
that the denominator of the difference of any two (after reducing to lowest terms) is less
than the denominator of any of the initial 2018 fractions? (6 points)

4. Let O be the circumcentre of triangle ABC. Let AH be an altitude of triangle ABC,
and let P be the foot of the perpendicular dropped to the line CO from point A. Prove
that the line HP passes through the midpoint of the side AB. (6 points)

5. There are 100 houses in a street, which are divided into 50 pairs. Each pair are located
opposite one another in the street. On the right side of the street all houses have even
numbers, while all houses on the left side have odd numbers. On both sides of the street
the numbers increase from one end of the street to the other, but the numbers are not
necessarily consecutive (some numbers may be skipped). For each house on the right side
of the street, the difference between its number and the number of the opposite house is
calculated, and as it turns out, all the differences are distinct from one another. Let n

be the greatest number of a house on the street. Find the smallest possible value of n.
(8 points)
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6. In the land of knights (who always tell the truth) and knaves (who always lie), 10 people,
at least one of them a knave, sit at a round table, each at a vertex of an inscribed regular
10-gon. A traveller can choose to stand at any point outside the table and ask the people
at the table:

“What is the distance from me to the nearest knave at the table?”

After that each person at the table gives him an answer. What is the minimal number
of questions the traveler has to ask to determine for sure what people at the table are
knaves? (The people at the table and the traveller are to be considered as points, and
everyone, including the traveller, can make exact measurement of the distance between
any two points.) (10 points)

7. You are travelling to some country and you don’t know its language. You know that
symbols “!” and “?” stand for addition and subtraction, but you don’t know which
symbol is for which operation. Each of these two symbols can be written between two
arguments, but for subtraction you don’t know if the left argument is subtracted from
the right or vice versa. For example, a?b could mean any of a− b, b− a and a+ b. You
don’t know how to write any numbers, but variables and brackets can be used as usual.
Given two arguments a and b how can you write for sure an expression that is equal to
20a− 18b? (12 points)
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1. Solution. We show that the product of all the numbers is necessarily positive.
First, consider any number having an odd-numbered position in the row, numbering
the positions left to right: 1, 2, . . . , 39. Then, all the remaining numbers can be
divided into 19 pairs of neighbouring numbers whose respective sums are positive.
Since the sum of all the numbers is negative, the number in the odd position under
consideration must therefore be negative. Thus, all numbers in odd-numbered
positions in the row must be negative. Now, since the sum of any two neighbouring
numbers is positive, each number in an even-numbered position must be positive.
Thus, there must be 20 negative numbers and 19 positive numbers in the row, and
hence the product of all the numbers is positive.

Note. Our argument above assumes the conditions can be satisfied. Examples
satisfying the conditions do indeed exist, e.g. −20, 21, −20, . . . , 21, −20; in this
example, each neighbouring pair sums to 1 (positive), but the total of all the
numbers is −1 (negative).

2. Solution 1. No, it is not possible. Suppose Aladdin initially has 1000 + x gold
coins. Then, after asking the Genie for more gold coins, once, Aladdin will have
1000 + x/2 gold coins, and after asking the Genie for more coins, ten times, he
will have 1000 + x/210 gold coins. Since no coin is broken into smaller pieces, x
must be divisible by 1024. Since Aladdin initially had a positive number of coins,
x > −1000. Thus, for divisibility by 1024, x must in fact be non-negative, so that
1000+x/210 ≤ 1000+x, and hence, it is not possible that the number of Aladdin’s
gold coins could have increased.

Solution 2. No, it is not possible. Going backwards, if Aladdin has x gold coins
after asking the Genie once, then he had 2x − 1000 gold coins before asking the
Genie. Similarly, if Aladdin has x gold coins after asking the Genie ten times, then
he had

2(2(· · · (2x− 1000) · · ·)− 1000)− 1000 = 210x− 1000(29 + · · ·+ 2 + 1)

= 210x− 1000(210 − 1)

gold coins, initially.

Suppose that the number of Aladdin’s gold coins has increased. Then

210x− 1000(210 − 1) < x

(210 − 1)x < 1000(210 − 1)

x < 1000

However, 210x− 1000(210 − 1) > 0, and so we get

x >
1000(210 − 1)

210
= 1000

(
1− 1

1024

)
> 999

which leads to a contradiction since we have 999 < x < 1000 for an integer x.



3. Solution 1. Such 2018 positive reduced fractions do exist. Consider the fractions,

1 + q

q
,

2 + q

2q
, . . . ,

2018 + q

2018q
,

where q = 2018! + 1. These fractions cannot be reduced since (q, i) = 1 for
1 ≤ i ≤ 2018. The difference, of any two of the fractions above, can be written as

i+ q

iq
− j + q

jq
=
j(i+ q)− i(j + q)

ijq
=
j − i
ij

,

where 1 ≤ i, j ≤ 2018. Thus, the denominator of the difference of any two of the
fractions is less than q, and hence less than q after reducing to lowest terms. So
we are done.

Solution 2. Such 2018 positive reduced fractions do exist. Choose any 2018
positive reduced to lowest terms fractions with numerators a1, a2, . . . , a2018 and
respective denominators b1 > b2 > · · · > b2018 > 0. Choose a positive fraction of
the form 1/d where d > b1b2 and (d, b1b2 · · · b2018) = 1. Then add 1/d to each of
the 2018 chosen fractions, to obtain

ai
bi

+
1

di
=
aid+ bi
bid

,

for each i such that 1 ≤ i ≤ 2018. The 2018 fractions thus obtained satisfy all
requirements, since their reduced form denominators are dbi, as (aid+ bi, dbi) = 1,
and the difference of any two of them,

aid+ bi
bid

− ajd+ bj
bjd

=
(aid+ bi)bj − (ajd+ bj)bi

bibjd
=
aibj − ajbi

bibj
,

has denominator at most b1b2 < d < dbi.

Solution 3 (by William Steinberg). Such 2018 positive reduced fractions do
exist. Take 2019 primes p1 < p2 < · · · < p2018 < p2019. They are coprime; so, for
each i < 2019, there exists bi such that bipi ≡ 1 (mod p2019).

By the Chinese Remainder Theorem, for each i < 2019, there exists an ai satisfying
the system of 2019 congruences,

ai ≡ bi (mod p2019)

ai ≡ 1 (mod pj), for 1 ≤ j ≤ 2018.

We will show that the 2018 fractions,

aipi
p1p2 · · · p2018p2019

,

where 1 ≤ i ≤ 2018, satisfy the requirements. Since ai by design is coprime to
each of the primes p1, p2, . . . , p2018, the reduced denominator of the ith fraction is

p1p2 · · · p2018p2019
pi

.



Now, for 1 ≤ i, j ≤ 2018,

aipi ≡ 1 ≡ ajpj (mod p2019).

So p2019 divides aipi−ajpj. Hence the difference of the ith and jth fractions, i 6= j,
when reduced to lowest terms, is at most

p1p2 · · · p2018 =
p1p2 · · · p2018p2019

p2019
<
p1p2 · · · p2018p2019

pi
,

for 1 ≤ i ≤ 2018.

4. Solution. Let M be the point of intersection HP and AB. We must show that
M is the midpoint of AB. Indeed, since O is the circumcentre of triangle ABC,

6 ABC = 1
2
6 AOC

= 90◦ − 6 OCA
= 6 PAC.

Since we have right angles at P and H standing on AC, PACH is cyclic. Hence,

6 PAC = 180◦ − 6 PHC = 6 PHB.

Thus, triangle BMH is isosceles with HM = BM .

Let base angles at B and H of triangle AMH be α. Then, being exterior to triangle
AMH, 6 HMA = 2α. Also, 6 MHA = 90◦ − α. So,

6 MAH = 180◦ − 6 HMA− 6 MHA

= 180◦ − 2α− (90◦ − α)

= 90◦ − α
= 6 MHA.

Therefore, triangle AMH is also isosceles, with HM = AM . Hence, AM = BM
which means M is the midpoint of AB.

C

H

B

O

M

P

A

5. Solution 1. The smallest possible value of n is 197. Recognising the problem as a
discrete optimisation, we first find a minimum bound for n, and then demonstrate
the bound is attainable via an example.



To estimate the difference between the greatest number of a house and the smallest
number of a house on the street we need to consider the distribution of house
numbers on both sides of the street bearing in mind that all the differences between
a number of a house on the right side of the street and the number of the opposite
house respectively are distinct from one another and odd. Therefore, there exist
two differences that distinct from one another at least by 98. Note that house
numbers along one side increase at least by 2. Thus, the difference between the
greatest number of a house and the smallest number of a house on the street is at
least 98 + 2 × 49 = 196 which gives the greatest number of a house on the street
to be at least 1 + 196 = 197. Consider the following example where houses on the
right side have numbers 2, 4, 6, . . . , 100 and houses on the left side have numbers
1, 5, 9, . . . , 197, respectively. This example satisfies the statement of the problem.
So the smallest possible value of n is 197.

Solution 2. The smallest possible value of n is 197. We again use bounding and
demonstration by example that the bound is attainable. Let a1 < a2 < · · · < a50
be odd numbers of houses on the left side of the street and b1 < b2 < · · · < b50
be even numbers of houses on the right side of the street with dk = bk − ak. Note
that all dk are odd. Let the least difference di = d for some i, 1 ≤ i ≤ 50 and the
greatest difference dj = D for some j, 1 ≤ j 6= i ≤ 50. Then, D ≥ d+ 2× 49.

Since we are looking for the smallest possible value of n, we can assume without
loss of generality that i > j. Then,

ai = bi − d ≥ bj + 2(i− j)− d

and
ai − aj ≥ D − d+ 2(j − i) ≥ 2(j − i) + 2× 49.

Therefore, a50−a1 ≥ 2×49 + 2×49 = 196 with a50 ≥ 197 follows. Using the same
example as in Solution 1 we obtain the smallest possible value n = 197.

Note. The question does not state that all differences must be positive. If this
condition holds, then an estimation similar to the estimation in Solution 2, but for
the case i < j gives the greatest number of a house on the street to be at least 198.
Then such estimation together with the example where houses on the right side
have numbers 2, 6, . . . , 198 and houses on the left side have numbers 1, 3, . . . , 99
respectively gives the smallest possible value of n to be 198.

Also note that the term difference conventionally is non-negative, though in the
context of arithmetic sequences, a common difference is allowed to be negative.
Thus usage of the word is ambiguous enough to allow either answer, if sufficiently
clear which convention was taken.

6. Solution. The traveller has to ask two questions to determine for sure all knaves at
the table. The first question can be asked from an arbitrary point. If all answers
received are the same, then all people at the table are knaves since knight and
knave give different answers. Otherwise, there exist neighbours at the table who
give different answers. Then, the traveller must stay at the midpoint of the arc
(which is part of the round table) between these two neighbours and ask the second
question. Since at least one of these two neighbours is a knave, the distance from



the traveller to the nearest knave is known. Thus, those who respond with the
distance correctly are knights and others are knaves.

Note that one question is insufficient. To see this, suppose the traveller asks just
the one question. Assign all people at the table in groups according to distance
from the traveller. Necessarily, the number of groups is at least two, since the
traveller cannot be at the centre of the regular 10-gon, so the distances from him
to the people at the table are not all the same. If the nearest group tell their
distance to the next group and all other groups tell their distance to the nearest
group, then the nearest group could be knights and all others could be knaves.
However, the nearest group could be knaves and all others could be knights, and
with one question we can’t decide between these possibilities.

7. Solution. To write for sure any linear combination of a and b we need to know
how we can represent 0, how we can represent the sum of two symbols a and b,
and how we can represent the opposite symbol −a.

An expression (a?a)!(a?a) is always equal to 0. So we can write 0 now bearing in
mind that we mean (a?a)!(a?a).

An expression (a?0)?(0?b) is equal to a+ b. Similarly to above, we can write a+ b,
bearing in mind that we mean (a?0)?(0?b).

Furthermore, 0?((0!(a!0))?0) is always equal to −a. Thus, we can represent an
expression that is equal to 20a− 18b using the operations we have defined above:

((· · · (a+ a) + · · ·+ a) + a)︸ ︷︷ ︸
adding 20 symbols a

+ (−((· · · (b+ b) + · · ·+ b) + b))︸ ︷︷ ︸
adding 18 symbols b

.

Note. The representations used for 0, a + b and −a are not unique. Other
representations can be obtained by replacing “?” with “!” and vice versa.


